SMB 3, ODX, Windows Server 2012 R2 & Windows 8.1 perform magic in file sharing for both corporate & branch offices


SMB 3 for Transparent Failover File Shares

SMB 3 gives us lots of goodies and one of them is Transparent Failover which allows us to make file shares continuously available on a cluster. I have talked about this before in Transparent Failover & Node Fault Tolerance With SMB 2.2 Tested (yes, that was with the developer preview bits after BUILD 2011, I was hooked fast and early) and here Continuously Available File Shares Don’t Support Short File Names – "The request is not supported" & “CA failure – Failed to set continuously available property on a new or existing file share as Resume Key filter is not started.”

image

This is an awesome capability to have. This also made me decide to deploy Windows 8 and now 8.1 as the default client OS. The fact that maintenance (it the Resume Key filter that makes this possible) can now happen during day time and patches can be done via Cluster Aware Updating is such a win-win for everyone it’s a no brainer. Just do it. Even better, it’s continuous availability thanks to the Witness service!

When the node running the file share crashes, the clients will experience a somewhat long delay in responsiveness but after 10 seconds the continue where they left off when the role has resumed on the other node. Awesome! Learn more bout this here Continuously Available File Server: Under the Hood and SMB Transparent Failover – making file shares continuously available.

Windows Clients also benefits from ODX

But there is more it’s SMB 3 & ODX that brings us even more goodness. The offloading of read & write to the SAN saving CPU cycles and bandwidth. Especially in the case of branch offices this rocks. SMB 3 clients who copy data between files shares on Windows Server 2012 (R2) that has storage an a ODX capable SAN get the benefit that the transfer request is translated to ODX by the server who gets a token that represents the data. This token is used by Windows to do the copying and is delivered to the storage array who internally does all the heavy lifting and tell the client the job is done. No more reading data form disk, translating it into TCP/IP, moving it across the wire to reassemble them on the other side and write them to disk.

image

To make ODX happen we need a decent SAN that supports this well. A DELL Compellent shines here. Next to that you can’t have any filter drives on the volumes that don’t support offloaded read and write. This means that we need to make sure that features like data deduplication support this but also that 3rd party vendors for anti-virus and backup don’t ruin the party.

image

In the screenshot above you can see that Windows data deduplication supports ODX. And if you run antivirus on the host you have to make sure that the filter driver supports ODX. In our case McAfee Enterprise does. So we’re good. Do make sure to exclude the cluster related folders & subfolders from on access scans and schedules scans.

Do not run DFS Namespace servers on the cluster nodes. The DfsDriver does not support ODX!

image

The solution is easy, run your DFS Namespaces servers separate from your cluster hosts, somewhere else. That’s not a show stopper.

The user experience

What it looks like to a user? Totally normal except for the speed at which the file copies happen.

Here’s me copying an ISO file from a file share on server A to a file share on server B from my Windows 8.1 workstation at the branch office in another city, 65 KM away from our data center and connected via a 200Mbps pipe (MPLS).

image

On average we get about 300 MB/s or 2.4 Gbps, which “over” a 200Mbps WAN is a kind of magic. I assure you that they’re not complaining and get used to this quite (too) fast Winking smile.

The IT Pro experience

Leveraging SMB 3 and ODX means we avoid that people consume tons of bandwidth over the WAN and make copying large data sets a lot faster. On top of that the CPU cycles and bandwidth on the server are conserved for other needs as well. All this while we can failover the cluster nodes without our business users being impacted. Continuous to high availability, speed, less bandwidth & CPU cycles needed. What’s not to like?

Pretty cool huh! These improvements help out a lot and we’ve paid for them via software assurance so why not leverage them? Light up your IT infrastructure and make it shine.

What’s stopping you?

So what are your plans to leverage your software assurance benefits? What’s stopping you? When I asked that I got a couple of answers:

  • I don’t have money for new hardware. Well my SAN is also pré Windows 2012 (DELL Compellent SC40 controllers. I just chose based on my own research not on what VARs like to sell to get maximal kickbacks Winking smile. The servers I used are almost 4 years old but fully up to date DELL PowerEdge R710’s, recuperated from their duty as Hyper-V hosts. These server easily last us 6 years and over time we collected some spare servers for parts or replacement after the support expires. DELL doesn’t take away your access to firmware &drivers like some do and their servers aren’t artificially crippled in feature set.
  • Skills? Study, learn, test! I mean it, no excuse!
  • Bad support from ISV an OEMs for recent Windows versions are holding you back? Buy other brands, vote with your money and do not accept their excuses. You pay them to deliver.

As IT professionals we must and we can deliver. This is only possible as the result of sustained effort & planning. All the labs, testing, studying helps out when I’m designing and deploying solutions. As I take the entire stack into account in designs and we do our due diligence, I know it will work. The fact that being active in the community also helps me know early on what vendors & products have issues and makes that we can avoid the “marchitecture” solutions that don’t deliver when deployed. You can achieve this as well, you just have to make it happen. That’s not too expensive or time consuming, at least a lot less than being stuck after you spent your money.

Advertisements

ODX Doesn’t Support IDE But Works With Both VHDX And VHD Virtual Disk Format


This question came up recently, once again, and deserves it a little blog post. If you want to see the benefits of ODX you’ll need to connect your virtual disks to a vSCSI controller or other supported controller option. These are iSCSI, vFC, a SMB 3 File Share or a pass-through disk. But unless you have really good reason to use pass-through disks, don’t. It’s limiting you in to many ways.

Basically in generation 1 virtual machines that boot from a vIDE this rules out the system disk. So the tip here is to store your data that’s moved around in or between virtual machines in vSCSI attached VDH or (preferably) VHDX  virtual disks. If you can use generation 2 virtual machines, you’ll be able to leveraged ODX on the system partition as well as it boots from vSCSI Smile.

It goes without saying you need to store any virtual disks  involved on ODX capable LUNs via iSCSI, FC, FCoE, SMB 3 File Share or SAS for ODX to be available to the virtual machine.

Also beware that ODX only works on NTFS partitioned disks. The files cannot be compressed or encrypted.  Sparse files are not supported either. And finally, the volume cannot be BitLocker protected.

Here’s a screenshot of a copy of 30GB worth of ISO files to a VHDX attached to a vSCSI controller:image

Here’s a screenshot of a copy of 30GB worth of ISO files to a VHDX attached to a vIDE controller.

image

You’ll notice quite a difference. Depending on the load on the controllers/SAN it’s on average 3 times slower than the same action to a VHDX disk on a vSCSI controller.

ODX Speed Up VHDX Creation Times On Windows Server 2012 (R2)


Some technlogies you just need to see in action instead of reading about it. I have posted a video on Vimeo that shows ODX in action on Windows Server 2012 R2 and a DELL Compellent SAN running Storage Center 6.3.10 firmware that supports UNMAP & ODX. Watch the video here or on Vimeo itself for a better experience. It’s a rerun of the demo scripts used in my TechNet Belux Live Meeting of this week.

We demonstrate the amazing speeds at which we can create VHDX files on both a traditional clustered disk and a Cluster Shared Volume. If you have ever tried to create a lot of fixed VHD/VHDX files, especially larger one, then you really need to check out ODX and its potential. If you have a SAN or think about acquiring one make sure you get this feature and be sure that it works as advertised.

I hope you enjoy it and inspires you to look where you can leverage this technology in your own environments.

Join me for aTechNet Live Meeting: Hyper-V Storage Efficiencies & Optimizations in Windows Server 2012 R2


So you have been  playing with or down right seriously testing Windows Server 2012 and perhaps even Windows Server 2012 R2. That’s great. Many of you might have it running in production or are working on that. That’s even better.

Windows Server 2012 has brought us unseen capabilities & performance enhancements that make it a future proof fundament for many versions to come and it is ready for the ever accelerating pace of hardware improvements. R2 has fine tuned some points and added improvements that are stepping stones to better today and even greater in vNext. I’d like to invite you to a free TechNet Live Meeting on Hyper-V Storage Efficiencies & Optimizations in Windows Server 2012 R2 and look at some of these capabilities with me.

image

As a virtualization guy two subjects are very dear to me and that is networking & storage, and this event is about a subset of the storage improvements. You might have heard about ODX and UNMAP but you have not had the change to play with it. You have read about the tremendous scalability of the IOPS in a VM and about large sector support for the next generation of hard disks drives. Well some of these we’ll demonstrate (ODX, UNMAP, Dynamically expanding VHDX performance) if the demo gods are with us. Others we’ll discuss so you’ll know where this comes into play and how you’ll benefit from them even without realizing you do. So without further delay register for the free TechNet Live Event here.

Windows Server 2012 R2 Unmap, ODX On A Dell Compellent SAN Demo


UNMAP & ODX Video

Some things are easier to show using a video so have a look at a video on UNMAP/ODX used with Windows Server 2012 R2 and Compellent SAN:

You can also go directly to the Vimeo page by clicking on the below screen shotimage

We start out with a 10.5TB large thinly provisioned LUN that has about 203GB of space in use on the SAN. So the LUN on the SAN might be 10.5TB and windows sees a volume that is 10.5TB only the effective data stored consumes storage space on the SAN. That ought to demonstrate the principle of thin provisioning adequately Smile. The nice PowerShell counter is made possible via the Compellent PowerShell Command Set.

We then copy 42GB worth of ISO files inside a Windows Server 2012 virtual machine from a fixed VHD to a dynamically expanding VDHX. Those are nice speeds. And look at how the size of the VHDX file grows on the CSV volume and how the space used on the SAN is growing. That’s because the LUN is thinly provisioned.

Secondly we copy the same ISO files to a fixed size VHDX. Again, some really nice speeds. As the VHDX is fixed in size you do not see it grow. When looking at the little SAN counter however we do see that the thinly provisioned LUN is using more storage capacity.

Once that is done we see that the total space consumed on the SAN for that CSV LUN has risen to 284GB. We then delete the data from both dynamically expanding VHDX and are about to run the Optimize-Volume command when we notice that the SAN has already reclaimed the space. So we don’t run the optimize command. Keep that in mind. By the way, this process is done as part of standard maintenance (defrag) and some NTFS check pointing mechanism that’s run every 5 minutes and sends down the info from the virtual layer to the physical layer to the SAN. During demo’s it’s kind of boring to sit around and wait for it to happen Smile. Just remember that in real life it’s a zero touch feature, you don’t need to baby sit it.

We then also delete the ISO files from the fixed VHDX and run Optimize-Volume G –Retrim and as result you see the space reclaimed on the SAN. As this is a fixed disk the size of the VDHX will not change. But what about the dynamically expanding VHDX? Well you need to shut it down for that. But hey, nothing happens. So we fire it up again and do run Optimize-Volume H –Retrim before shutting it down again and voila.

So what do you need for this?

Rest assured. You don’t need the most high end, most expensive, complex and proprietary SAN hardware to get this done. What you need is good software (firmware) on quality commodity hardware and you’re golden. If any SAN vendor wants to charge you a license fee for ODX/UNMAP just throw them out. If they don’t even offer it walk away from them and just use storage spaces. There are better alternatives than overpriced SANs lacking features.

I’ve found that systems like Equalogic & Compellent are in the sweet point for 90 % of their markets based on price versus capabilities and features.  Let’s look at the a Compellent for example. For all practical intend this SAN runs on commodity hardware. It’s servers & disk bays. SAS to the storage & FC, iSCSI or SMB/NFS for access. With capable hardware the magic is in the software. Make no mistake about it, commodity hardware when done right, is very, very capable. You don’t need a special proprietary hardware & processors unless for some specialized nice markets. And if you think you do, what about buying commodity hardware anyway at 50% of the cost and replacing it with the latest of the greatest commodity hardware after 4 years and still come out on top cost wise whilst beating the crap out of that now 4 year old ASIC and reaping the benefits of a new capabilities the technology evolutions offers? Things move fast and you can’t predict the future anyway.

Some ODX Fun With Windows Server 2012 R2 And A Dell Compellent SAN


I’m playing and examining some of the ODX capabilities of our SANs (Dell, Compellent) at the moment. It all seems pretty impressive in the demo’s. But how does that behave in real live on our gear? How impressive is ODX? Well pretty darn impressive actually. And as all great power it needs to be wielded carefully, with insight and thought.

Let’s create some fixed virtual disks. 10 * 50GB vhdx and 10* 475GB vhdx. We run a simple quick PowerShell script:

image

You see this correctly, it’s 41.5088855 seconds. let’s round up to 42 seconds. That’s 20 fixed VHDX files. 10 of 50GB, 10 of 475GB in 42 seconds. That’s a total of 5.12TB of vhdx files.

image

Compared to creating a single 5TB vhdx file this isn’t to shabby as that get done in 26 seconds!

You can only dream of the kind of scenario’s this kind of power enables. Woooot!!!